Steel Surface Defect Detection using Deep Learning
نویسندگان
چکیده
منابع مشابه
Concept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملChord Detection Using Deep Learning
In this paper, we utilize deep learning to learn high-level features for audio chord detection. The learned features, obtained by a deep network in bottleneck architecture, give promising results and outperform state-of-the-art systems. We present and evaluate the results for various methods and configurations, including input pre-processing, a bottleneck architecture, and SVMs vs. HMMs for cho...
متن کاملUsing machine learning for defect detection
In this paper we present an approach to defect detection in images based on machine learning algorithms. A qualitative model of defect has been devised based on human experience. A set of vision primitives measuring defect features has been deened. Objects in images candidate to be classiied as defects are submitted to automatic classiication, which is achieved with learning by examples algorit...
متن کاملSimultaneous Multiple Surface Segmentation Using Deep Learning
The task of automatically segmenting 3-D surfaces representing boundaries of objects is important for quantitative analysis of volumetric images, and plays a vital role in biomedical image analysis. Recently, graph-based methods with a global optimization property have been developed and optimized for various medical imaging applications. Despite their widespread use, these require human expert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Volume 5 - 2020, Issue 7 - July
سال: 2020
ISSN: 2456-2165
DOI: 10.38124/ijisrt20jul240